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Abstract

We construct a new class of positive indecomposable maps in the algebra
of d x d complex matrices. These maps are characterized by the ‘weakest’
positivity property and for this reason they are called atomic. This class
provides a new rich family of atomic entanglement witnesses which define an
important tool for investigating quantum entanglement. It turns out that they
are able to detect states with the ‘weakest’ quantum entanglement.

PACS numbers: 03.67.Mn, 03.65.Ud, 02.30.Tb

1. Introduction

One of the most important problems of quantum information theory [1] is the characterization
of mixed states of composed quantum systems. In particular it is of primary importance to
test whether a given quantum state exhibits quantum correlation, i.e. whether it is separable
or entangled. For low-dimensional systems there exists a simple necessary and sufficient
condition for separability. The celebrated Peres—Horodecki criterion [2, 3] states that a state
of a bipartite system living in C*> ® C? or C> ® C? is separable iff its partial transpose is
positive (one calls it a PPT state). Unfortunately, for higher-dimensional systems there is no
single universal separability condition.

The most general approach to the separability problem is based on the following
observation [4]: a state p of a bipartite system living in H 4 ® Hp is separable iff Tr(Wp) > 0
for any Hermitian operator W satisfying Tr(W P4 @ Pg) > 0, where P4 and Pp are projectors
acting on H 4 and H g, respectively. Recall, that a Hermitian operator W € B(H4 ® Hp) is an
entanglement witness [4, 5] iff: (i) it is not positively defined, i.e. W # 0, and (i) Tr(Wo) > 0
for all separable states o. A bipartite state p living in H4 ® Hp is entangled iff there exists
an entanglement witness W detecting p, i.e. such that Tr(Wp) < 0. Clearly, the construction
of entanglement witnesses is a hard task. It is easy to construct W which is not positive, i.e.
has at least one negative eigenvalue, but it is very difficult to check that Tr(Wo) > 0 for all
separable states 0.

The separability problem may be equivalently formulated in terms of positive maps [4]:
a state p is separable iff (I ® A)p is positive for any positive map A which sends positive
operators on Hp into positive operators on H4. Due to the celebrated Choi—Jamiotkowski

1751-8113/08/215201+13$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1


http://dx.doi.org/10.1088/1751-8113/41/21/215201
http://stacks.iop.org/ JPhysA/41/215201

J. Phys. A: Math. Theor. 41 (2008) 215201 D Chruscinski and A Kossakowski

[6, 7] isomorphism there is a one to one correspondence between entanglement witnesses and
positive maps which are not completely positive: if A is such a map, then W, := (1® A)P*
is the corresponding entanglement witness (P* stands for the projector onto the maximally
entangled state in H 4 ® H ). Unfortunately, in spite of the considerable effort, the structure of
positive maps (and hence also the set of entanglement witnesses) is rather poorly understood
[7-44].

Now, among positive linear maps the crucial role is played by indecomposable maps.
These are maps which may detect entangled PPT states. Among indecomposable maps there
is a set of maps which are characterized by the ‘weakest positivity’ property: they are called
atomic maps and they may be used to detect states with the ‘weakest’ entanglement. The
corresponding entanglement witnesses we call indecomposable and atomic, respectively.

There are only a few examples of indecomposable maps in the literature (for the list see,
e.g. the recent paper [44]). The set of atomic ones is considerably smaller. Interestingly,
Choi’s first example [7] of an indecomposable positive map turned out to be an atomic one.
Recently, Hall [45] and Breuer [46] considered a new family of indecomposable maps (they
were applied by Breuer [47] in the study of rotationally invariant bipartite states, see also
[48]). In this paper we show that these maps are not only indecomposable but also atomic.
Moreover, we show how to generalize this family to obtain a large family of new positive
maps. We study which maps within this family are indecomposable and which are atomic.

The paper is organized as follows: in the following section we introduce a natural hierarchy
of positive convex cones in the space of (unnormalized) states of bipartite d ® d quantum
systems and recall basic notions from the theory of entanglement witnesses and positive maps.
Section 3 discusses properties of the recently introduced indecomposable maps [45, 46] and
provides the proof that these maps are atomic. Finally, section 4 introduces a new class of
indecomposable maps and studies which maps within this class are atomic. A brief discussion
is included in the last section.

2. Quantum entanglement versus positive maps

Let M, denote a set of d x d complex matrices and let M be a convex set of semi-positive
elements in My, that is, M defines a space of (unnormalized) states of d-level quantum
system. Let us recall [50] that for any normalized positive operator p on H ® H one may
define its Schmidt number

SN(p) = ;?iwri{ml?x SR(¥)}, 2.1

where the minimum is taken over all possible pure states decompositions

p = pelvidval, 2.2)
k

with pr > 0, Y, px = 1 and V. are normalized vectors in H ® H. The Schmidt rank SR(v/)
denotes the number of non-vanishing Schmidt coefficients in the Schmidt decomposition of
Y. This number characterizes the minimum Schmidt rank of the pure states that are needed
to construct such density matrix. It is evident that 1 < SN(p) < d = dim H. Moreover, p is
separable iff SN(p) = 1. This notion enables one to introduce the following family of positive
cones:

V. ={p e (Mg ® My)"ISN(p) < r}. (2.3)
One has the following chain of inclusions:
Vic---CVa=(My® My)*. (2.4)
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Clearly, V) is a cone of separable (unnormalized) states and V,; \ V; stands for a set of entangled
states. Note, that a partial transposition (1; ® t) gives rise to another family of cones:

Vi= @0V, (2.5)
such that V! C --- C V9. One has V; = V!, together with the following hierarchy of
inclusions:

Vi=vinvicv,nvic...cv,nvei (2.6)

Note, that V; N V¢ is a convex set of PPT (unnormalized) states. Finally, V, N V¥ is a convex
subset of PPT states p such that SN(p) < r and SN[(1; ® 7)p] < 5.

Consider now a set of positive maps ¢ : My —> My, i.e. maps such that o(M}) C M.
Following Stgrmer definition [9], a positive map ¢ is k-positive iff

(I®@)(Vi) C (Ma ® Ma)", (2.7
and it is k-copositive iff
MR @) (VY C (Ma ® My)". (2.8)

Denoting by P (P¥) a convex cone of k-positive (k-copositive) maps one has the following
chains of inclusions:

P,CPy_,C---CPyCPy, 2.9)
and
Plcpi-lc...cP’cP, (2.10)

where P, (P%) stands for a set of completely positive (copositive) maps.

A positive map ¢ : My —> M, is decomposable iff ¢ € P;+ P, thatis, ¢ can be written
as ¢ = @1 + ¢, with ¢; € P; and ¢, € P?. Otherwise ¢ is indecomposable. Indecomposable
maps can detect entangled states from V; N V4 = PPT, that is, bound entangled states. Finally,
a positive map is atomic iff ¢ ¢ P, + P?. The importance of atomic maps follows from the
fact that they may be used to detect the ‘weakest’ bound entanglement, that is, atomic maps
can detect states from V, N V2.

Actually, Stgrmer definition [9] is rather difficult to apply in practice. Using the Choi—
Jamiotkowski isomorphism [6, 7] we may assign to any linear map ¢ : M; — M, the
following operator ¢ € My @ My:

o=; ®p)P" € My ® My, 2.11)

where P* stands for (unnormalized) maximally entangled state in Cl®C!. Ife;i=1,...,d)
is an orthonormal basis in C¢, then

d
=) e ®ele, (2.12)
ij=1
where e;; = |i)(j]| defines a basis in M. It is clear that if ¢ is a positive but not completely
positive map then the corresponding operator ¢ is an entanglement witness. Now, the space
of linear maps £L(M,, M) is endowed with a natural inner product:

d2
(@) =Tr [ Y o(f) ¥ (fa) | (2.13)
a=1
where f, is an arbitrary orthonormal basis in M. Taking f, = e;;, one finds
d d
@) =T | Y o) Ve | =Tr [ Y plepvie |- (2.14)
i,j=1 i,j=1
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The above defined inner product is compatible with the standard Hilbert—Schmidt product in
M, ® M. Indeed, taking ¢ and ¥ corresponding to ¢ and v, one has

@ Vs = Tr@*P) (2.15)
and using (2.12) one easily finds
(9. ¥) = @ Vns. (2.16)

that is, formula (2.12) defines an inner product isomorphism. This way one establishes
the duality between maps from L£(M,, M;) and operators from M; ® M, [32]: for any
pEM;®Myand ¢ € L(My, M) one defines

(0, 9) = (p,Pus- (2.17)

In the space of entanglement witnesses W one may introduce the following family of subsets
W, C M;® Mg:

W, ={WeM;M;|Tr(Wp) >0, p €V,}. (2.18)
One has
M;QM)D)'=W,C - C Wi (2.19)

Clearly, W = W; . W,. Moreover, for any k > 1, entanglement witnesses from W; . W,
can detect entangled states from V; \ V}, i.e. states p with Schmidt number ! < SN(p) < k.
In particular W € W ~. Wy, can detect state p with SN(p) = k.

Consider now the following class:

W =W, +(1®1)W,, (2.20)
thatis, W € W iff
W=P+(1®1)0, 2.21)

with P € W, and Q € W;. Note, that Tr(Wp) > 0 for all p € V, N V*. Hence such W can
detect PPT states p such that SN(p) > r and SN[(ll; ® 7)p] > s. Entanglement witnesses
from WZ are called decomposable [49]. They cannot detect PPT states. One has the following
chain of inclusions:

WiC - CW5CW; =W. (2.22)

The ‘weakest’ entanglement can be detected by elements from W] W% We shall call them
atomic entanglement witnesses. It is clear that W is an atomic entanglement witness if there
is an entangled state p € V> N V2 such that Tr(Wp) < 0. The knowledge of atomic witnesses,
or equivalently atomic maps, is crucial: knowing this set we would be able to distinguish all
entangled states from separable ones.

3. A class of atomic maps of Breuer and Hall
Recently Breuer and Hall [46, 45] analyzed the following class of positive maps ¢ : My —
My

eH(X) =Tr(X)Iy — X — UXTU*, (3.1)

where U is an antisymmetric unitary matrix in C¢ which implies that d is necessarily even and
d > 4 (for d = 2 the above map is trivial ‘Pf/ (X) = 0). One may easily add a normalization
factor such that

_ 1
o) = — 90 (3.2)
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is unital, that is, (Zg (I;) = L. The characteristic feature of these maps is that for any rank one
projector P its image under gol‘ﬂ reads as follows:
¢y(P)=1;~ P~ Q, (3.3)

where Q is again rank one projector satisfying PQ = 0. Hence (pé(P) > 0 which proves
positivity of (pz. It was shown [45, 46] that these maps are not only positive but also
indecomposable.

Interestingly, maps considered by Breuer and Hall are closely related to a positive map
introduced long ago by Robertson [17-20]. The Robertson map ¢r : My —> M, is defined
as follows:

. (Xu X12> _1! ( LTrXy |Xn+ R(X21)) (3.4)
Xo1 | X2 2\ X2 +R(X1) | LTrXy
where Xy € M, and R : M, —> M, is defined by
R(@) =1, Tra —a, 3.5)
that is, R is nothing but the reduction map. Introducing an orthonormal basis (e, ..., e4) in

C*and defining e;; = |e;)(e;|, one easily finds the following formulae:
pr(enn) = @a(en) = j(es3 + eas),
or(e33) = @aleas) = 3(e11 +ex),
pr(e3) = 3(e3 +ep),
pr(es) = (el — ex), (3.6)
pr(e2s) = 3(e23 — ea),
pr(ea) = (e +e3)),
@r(e12) = gr(ess) = 0.
Note, that the Robertson map is unital, i.e. pg(Il4) = Ls.

Theorem 1. The normalized Breuer—Hall map a?] in d = 4 is unitary equivalent to the
Robertson map g, that is

70 (X) = Uipr(Us XUx)UY, (3.7)

for some unitaries Uy and U,.

Proof. Let us observe that

Tor(X)T* = g, (X), (3.8)
where I is the following 4 x 4 unitary matrix
L| 0
I'= <0 —Hz) ) 3.9

and &5,4]0 is a normalized Breuer—Hall map (3.1) corresponding to 4 x 4 antisymmetric unitary
matrix!

(3.10)

' Actually, Uy may be multiplied by a unitary block-diagonal matrix

e“"]lz 0
Up— Up = < 0 e')‘z]lz) - Uo,

but the arbitrary phases A1 and A, do not enter the game.
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Now, any antisymmetric unitary matrix U may be represented as
U=VUV", (3.11)

for some orthogonal matrix V. It shows that a general Breuer—Hall map ga?j is unitary equivalent
to (p(‘)1

oy (X) = Ve, (VIXVIVT, (3.12)
and hence (after normalization) to the Robertson map

Pu(X) = (VD)gr(VIXV)(VD)T, (3.13)
withU; =Vl and U, = V. O

Note, that for V = I4, one obtains

o0, (eii) = orlei), (3.14)
P, (ei)) = —@r(ei)), i #J. (3.15)

Actually, one has
op, (i) =0, i+je{3.7.

It was already shown by Robertson [19] that ¢ is indecomposable. However, it turns out
that one may prove the following much stronger property:

Theorem 2. Robertson map g is atomic.

Proof. To prove atomicity of ¢x one has to construct a PPT state p € (M4 ® My)* such that:
(1) both p and its partial transpose p* are of Schmidt rank two and (2) entanglement of p is
detected by the corresponding entanglement witness

4
Wr=(1Q¢r)Pf = Z eij @ pr(eij).

i,j=1

One easily finds
1 : 1
1 - -1
1 - 1
1 . 1
1 - 1
1 1 | -1
Wg = 3 11 , (3.16)
1 - 1
1 . 1
. 1 . . 1
-1 1
1 1
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where to maintain a more transparent form we replace all zeros by dots. Note, that Wg has
single negative eigenvalue ‘—1°, ‘0’ (with multiplicity 10) and ‘+1’ (with multiplicity 5).
Consider now the following state constructed by Ha [33]:

[ O PR, |

pra=z | ——— | (3.17)

It turns out [33] that py, is PPT, and both py, and (1 ® 7)oy, have Schmidt rank 2. One easily
find
nas Te(Wepna) = —1/14 < 0, (3.18)

which proves atomicity of ¢g. ]
Corrolary 1. The Breuer—Hall map (p?] is atomic.

Proof. Using the relation between @}, and the Roberston map g

Py (X) = Uipr(Us XU Y, (3.20)
let us compute Tr(p Wy ), where

W, = (1®¢}) P}, (3.21)

and p is an arbitrary state in 4 @ 4. One obtains

4 4
Tr(pW;) =Tr | p- Zeij®¢?/(€ij) =Tr|p- Z@j@Ul(PR(Uz*eijUz)U]*
Q=1 ii=1

2 Note, that py, is trivially extended from the following state in 3 ® 3:

S A I R |

L I T . (3.19)

-1 - <l e

which, therefore, provides an example of a bound entangled state.
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Now, introducing ¢; = Uje;, one has

4
Tr(pWy) = Tr | p- ) U2, Us ® Uipr@)Uf

ij=1
=Tr(p - (U2 @ U1)(1 ® @r) P (U, ® Uy)*)
=Tr((U, @ U1)*p(Ur @ Uy) - Wg). (3.22)
Hence, if py, witnesses atomiticity of g, then (U, ®@ U;) pya (U> @ U;)* witnesses atomiticity
of ¢,. O

The above result may be immediately generalized as follows:

Corrolary 2. If a positive map ¢ : B(H,) —> B(H>) is atomic, then ¢ : B(H;) —> B(H,)
defined by

(X) 1= Uip(U; XUy U}, (3.23)

is atomic for arbitrary unitary operators U; and U, (Uy : Hy —> Hi; k =1, 2).
Theorem 3. The Breuer—Hall map gofj : My —> M, with even d is atomic.

Proof. Let ¥ be a four-dimensional subspace in C¢. It is clear that Uy, := U|yx, gives rise to
the Breuer—Hall map in four dimensions

o}, 1 B(T) — BU(T)).

This map is atomic and hence it is witnessing by a 4 x 4 density matrix supported on X,
such that p is PPT, Schmidt rank of p and its partial transposition equals 2, and such that
Tr(,o W,‘}E) < 0. Let us extend the 4 x 4 state p into the following d ® d state:

P = {0 o 324
where we take a basis (e, ..., eq) such thatey, ..., e; € Z. Itis clear that extended p is PPT
in d ® d and Schmidt rank of p and (1 ® t)p equals again 2. Moreover

Tr(oWg) = Tr(pWy, ) <O, (3.25)
which proves atomicity of <ﬂ21/~ O

Let us observe that d need not be even. Indeed, let d > 4 and let U be the antisymmetric
unitary operator U : ¥ —> X, where X denotes an arbitrary even-dimensional subspace of
C“. One extends U to an operator U in C? by

Ux,y) = (Ux,0), (3.26)

where x € ¥ and y € %+, and hence, U is still antisymmetric but no longer unitary in C¢.
Finally, let us define

ed(X) =Tr(X); — X —UX"U", (3.27)
that is, it acts as the standard Breuer—Hall map on B(X) only. Note, that
o) = (d =Dy + P, (3.28)

where P denotes a projector onto X+. Therefore, the normalized map reads as follows:
LX) =[(d =g+ P72 0L (X) - [(d — DIy + PH]7'V2, (3.29)

and has much more complicated form than (3.2).

8



J. Phys. A: Math. Theor. 41 (2008) 215201 D Chruscinski and A Kossakowski

Theorem 4. The formula (3.27) with arbitrary d > 4 and even-dimensional subspace % (with
dimX > 4) defines a positive atomic map.

Proof. Let d > dimX = 2k > 4. It is clear that
<,0l2]k — ¢%|B(Z)’ (3.30)

defines the standard Breuer—Hall map in B(X¥). Now, due to theorem 3 the map g%" is atomic.
If p is a 2k ® 2k state living in © ® ¥ witnessing atomicity of ¢7f, then trivially extended
in C? ® C? witnesses atomicity of w%. |

4. New classes of atomic maps

Now we are ready to propose a generalization of the class of positive maps considered by
Hall [45]

e(X) =Y cumAuX" A}, “.1)
k<l m<n
where
An = ey — ex, 4.2)

with ¢4, being a d x d Hermitian matrix. One example of such a map is a Breuer—Hall one
e (X) =Te(X), — X —UXTU*, 4.3)
which is shown to be atomic. The other example is provided by the well-known reduction
map
R(X) =Tr(X)I; — X. (4.4)

This map is completely co-positive and hence decomposable. It is therefore clear that any
convex combination

oY (X) = x¢(X) + (1 — x)R(X) = Tr(X)I; — X —xUX"U*, 4.5)

for x € [0, 1], defines a positive map from the class (4.1). Note, that if rank U = 2k < d,
then the matrix [cx; ] possesses a negative eigenvalue ‘1 — xk’ for x satisfying

1

z <x <1, (4.6)

and hence ¢fc/ (X) is indecomposable if (4.6) is satisfied. Finally, let us generalize (4.5) and
consider a 2-parameter family

Xy (X) =Te(X)Iy — yX —xUX"U*. (C%))

It is clear that for y € [0, 1] the above map is positive. Note, that xé{O(X ) = Tr(X)1, is
completely positive whereas Xf’ | reproduces the Breuer—Hall map gof]. Now, we are going to
establish the range of (x, y) € [0, 1] x [0, 1] for which X)f{ y is atomic.

Theorem 5. A positive map X)f{ y Is atomic ifx+y>7/4

Proof. Let us start with d = 4 and £ = C* and consider X)f{ y with U = U, defined in (3.10)
x5 (X) = Te(X)Iy — yX — xUp X" Ug. 4.8)

9
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Let le{‘; be the corresponding entanglement witness

Wl = (1@ x14) P} =

I—x . y—x . —X —X
11—y - .
. 1 .
. 1 -y
. I—y . . . .
y—x 1—x . . —X . —X
. 1 . —y
. 1]y .
. . y |1 . .
. —y . . 1 .
—X —X . . 1—x . y—x
. . 1—y . .
. . —y . 1
. y . . .
. . . 1—y
—Xx —Xx y—x 1—x
(4.9)
It is easy to show that
Tr((Cpm WD) = 2(7 — dx — 4y), (4.10)

where py, is defined in (3.17). Hence, if 7 — 4(x + y) < 0, then XXU[{ is atomic. Now, it
is clear from the proofs of theorems 1 and 4 that the same result applies for arbitrary d and

arbitrary U.

O

Similarly, we may find a region in (x, y) square where X;J, , is indecomposable. One has

Theorem 6. A positive map Xf{ y is indecomposable if x +y > 3/2.

Proof. Similarly, as in the proof of the previous theorem, one computes

Tr((Cpnen TIWS) = 3 — 2x — 2y, 4.11)
where ppey 1S defined by
2 —1 —1
2
1
1 -1
2
2 —1 —1
1 -1
1 1)1
Prew = V.. 11 ’
-1 1
-1 . -1 2
2
-1 1
1
2
-1 -1 2
(4.12)

10
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7/4

3/2 4

1 32 714 X

Figure 1. Regions of indecomposability (gray and black) and of atomicity (black).

and turns out to be PPT.” It is therefore clear that for x + y > 3/2, that map x5 is
indecomposable. Using the same techniques as in the proof of theorem 5 we prove that
X +y > 3/2 guaranties indecomposability for arbitrary d and U. (]

The regions of indecomposability (x + y > 3/2) and of atomicity (x + y > 7/4) are
displayed in figure 1. We stress that these regions are derived by using specific states: ppew
and py,, respectively. It is interesting to look for other states which are ‘more optimal’ and
enable us to enlarge these regions.

Finally, let us observe that the family Xf{ , may be further generalized as follows: consider
a set of N antisymmetric unitary 4 x 4 matrices U = (Uy, ..., Uy) and let x = (x1, ..., xy)
be a set of N non-negative numbers. Define the following map*

N
WY (X) =Tr(XOL — yX — Y xU XU (4.15)

k=1
It is clear that if U; = --- = Uy =: U, then \Il,gy = x!, with x := x; +-- -+ xy. Note, that

for an arbitrary rank-1 projector P each QO = U PU}’ is again rank-1 projector orthogonal
to P. However, for U # U, projectors QO and Q; are no longer mutually orthogonal. Let us
observe that for x < 1 the map \IJE , 18 positive for arbitrary antisymmetric unitary U but the

indecomposability /atomicity of ‘Ilf , depends upon U and it deserves further studies.

5. Conclusions

We provided a new large class of positive atomic maps in the matrix algebra M;. These maps
generalize a class of maps discussed recently by Breuer [46] and Hall [45]. The importance
3 Actually, we originally constructed ppew to ‘beat’ (3.18). One finds
Tr(Wg pnew) = —1/6, (4.13)
which is ‘much better’ than —1/14. We conjecture, that ppey is ‘optimal’ in the following sense:
min Tr(Wgp) = —1/6, (4.14)
pEPPT

that is, ppew minimizes Tr(Wgp) among all PPT states.
4 We thank Dr R Augusiak for his remarks.
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of atomic maps follows from the fact that they may be used to detect the ‘weakest’ bound
entanglement, that is, atomic maps can detect entangled states from V, N V2. By duality,
these maps provide a new class of atomic entangled witnesses. Note, that if ¢ is atomic and
(I®¢@)p #0,thenp € Vo N V2 and hence p may be used as a test for atomicity of positive
indecomposable maps. Since we know only few examples of quantum states belonging to
V5 N V2 any new example of this kind is welcome. It is hoped that new maps provided in this
paper find applications in the study of ‘weakly’ entangled PPT states. For example in recent
papers [51] and [52] we constructed very general classes of PPT states in d ® d. It would be
interesting to search for entangled states within these classes by applying our new family of
indecomposable and atomic maps.
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